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Abstract

A piecewise linearization method based on the Taylor series expansion of nonlinear ordinary differential equation with

respect to time, displacement and velocity is developed for the study of one-degree-of-freedom nonlinear oscillators with

smooth and fractional-power nonlinearities. The method provides smooth solutions and explicit, nonstandard finite

difference expressions for the displacement and velocity, and is exact for constant coefficients, linear ordinary differential

equations with linear time-dependent forcings. The method is applied to ten oscillators with fractional-power nonlinearities

and its results are compared with those of harmonic balance techniques, Ritz procedure and numerical solutions based on

nonstandard finite difference methods, in terms of displacement, velocity, energy and angular frequency, when available. It

is shown that the linearization method presented here provides slightly more (less) accurate results than those of

nonstandard methods for fractional powers greater (smaller) than one, and both techniques are more accurate than those

that freeze the nonlinearities at the previous time step or linearize the nonlinear terms with respect to only the displacement

or the velocity. For the examples and time steps considered in this paper, the linearization method has been found to be

more accurate than the harmonic balance and Ritz procedures.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Nonlinear oscillators with fractional-power nonlinearities have been of great interest for many years [1] and
have recently been the subject of active research by several investigators who have proposed to analyze them
by means of perturbation methods, e.g., harmonic balance, slowly varying amplitude and phase, etc., and
numerical techniques. For example, Mickens et al. [2] have studied a simple harmonic oscillator with
fractional damping by the Krylov–Bogoliubov–Mitropolski or slowly varying amplitude and phase technique.
Oyedeji [3] has analyzed a nonlinear elastic force van der Pol oscillator and employed the harmonic balance
method to determine the first approximation to the solution. He has also used a nonstandard finite difference
method [4] to determine its numerical solution. Hogan [5] has employed the method of multiple (time) scales to
study the dynamics of a piecewise smooth van der Pol oscillator and determined the amplitude of the limit
cycle.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Several examples of oscillators with fractional-powers nonlinearities were presented by Mickens [6] who
proposed their analysis by means of the combination of equivalent linearization and averaging techniques.
Other authors have applied first linearization and then harmonic balance techniques to the analysis of
nonlinear oscillators [7]. These techniques have the advantage that they result in simple algebraic equations,
instead of the complicated nonlinear ones that arise upon the application of the harmonic balance method.
Combined linearization/perturbation methods for perturbed smooth dynamical systems first linearize the
ordinary differential equation by either a straightforward linearization or a minimization of the difference
between the nonlinear terms and the linear ones that approximate them [8], and are approximation techniques
that are usually limited to small values of the perturbation parameter.

In this paper, a piecewise linearized method for the solution of one-degree-of-freedom problems with
smooth or fractional-power nonlinearities is presented. The method is not a perturbation one, but it is based
on the piecewise time linearization of the nonlinear differential equation and provides smooth solutions since
the displacement and the velocity are assumed to be continuous at the end of the intervals. The method is
based on and is an extension of the time linearization technique developed by the author and co-workers
[9–11] for nonlinear first-order ordinary differential equations and does not require the presence of either
linear damping or linear stiffness terms in the governing equation. In addition, the linearization method
presented here provides second-order accurate, nonstandard, explicit, finite difference equations which are
regular for smooth vector fields with symmetric Jacobian matrices, preserves the linear stability of hyperbolic
equilibrium points, exhibits invariant closed curves that converge to periodic hyperbolic trajectories, and can
adequately approximate any trajectory near a stable periodic trajectory for sufficiently small time steps [12].
Furthermore, the technique presented here is different from that proposed by Dai and Singh [13] in that the
latter requires the presence of either linear damping and/or linear stiffness terms, and is based on the Taylor
series expansion of the nonlinearities in the time or independent variable and, therefore, requires stronger
differentiability requirements than those of the linearization method presented in this paper, if linear,
quadratic or cubic terms are kept in the Taylor series expansion of Dai and Singh’s procedure [13].

The paper has been arranged as follows. In Section 2, the piecewise linearization method for nonlinear
oscillators with smooth nonlinearities is first formulated and compared with that of Dai and Singh [13]. In that
section, we show that, upon imposing continuity and smoothness requirements at the end of each interval, the
method results in nonstandard, explicit finite difference formulae that depend on the derivatives of the
nonlinearities with respect to time, displacement and velocity. In that section, we also analyze the linear
stability and convergence of the piecewise linearization method. A variety of conservative and non-
conservative oscillators with fractional-power nonlinearities are studied in Section 3, where the results of the
piecewise linearization method presented here are compared with available exact, asymptotic and numerical
solutions in terms of the predicted displacement, velocity, energy and angular frequency. The paper ends with
a summary of the major findings.

2. Formulation

In this paper, we shall be concerned with the following single degree-of-freedom equation

€x ¼ f ðt;x; _xÞ; t40, (1)

subject to xð0Þ ¼ x0 and _xð0Þ ¼ _x0, where t is time, x is the displacement, and the dot denotes differentiation
with respect to t. Eq. (1) can be written as a system of two first-order ordinary differential equations upon
defining y � _x and has a unique solution in the interval ½t0; t0 þ a� provided that f is continuous on the
rectangle Q � fðt;xÞ : t0ptpt0 þ a; kX � X 0kpbg where X � ðx; _xÞT and the superscript T denotes transpose,
and satisfies a uniform Lipschitz condition with respect to both x and _x on Q, where a ¼ minfa; b=Mg with
M ¼ max kf k : ðt;x; _xÞ 2 Q, according to the Picard–Lindelof’s theorem.

Eq. (1) cannot, in general, be integrated analytically, and, therefore, its solution must be determined
numerically. In this paper, we first decompose the interval of integration 0ptpT (T40) into non-overlapping
intervals tnotptnþ1 where n is a natural number including zero such that t0 ¼ 0. Furthermore, although we
shall mainly be concerned with nonlinear oscillators with fractional-power nonlinearities where f is continuous
and differentiable with respect t, and continuous but not necessarily differentiable with respect to x and/or _x,
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e.g., f ðt;x; _xÞ ¼ Axp where p is a rational number such that 0opo1 and A is a constant, the piecewise
linearization methods presented here are also valid for smooth f ðt; x; _xÞ, i.e., f is a continuous with continuous
first-order derivatives with respect to t, x and _x. For this reason, the presentation that follows first considers
the case that f is a smooth function of its three arguments. It must be emphasized that the examples considered
in this paper, except Examples 7 and 9 with n ¼ 0, do not satisfy the Lipschitz condition and, therefore, the
Picard–Lindelof’s theorem does not guarantee the existence and uniqueness of their solutions, and, as a
consequence, there is no guarantee that these examples have smooth solutions.

2.1. Smooth f ðt;x; _xÞ

For smooth f ðt;x; _xÞ in ½tn; tnþ1�, Eq. (1) can be linearized with respect to the previous time level in the
interval tnptptnþ1, and the result of this linearization can be written as the following second-order, linear,
ordinary differential equation

€x ¼ f n þ Tnðt� tnÞ þ Jnðx� xnÞ þHnð _x� _xnÞ; tnotptnþ1, (2)

where f n � f ðtn;xn; _xnÞ, Tn � qf =qtðtn; xn; _xnÞ, Jn � qf =qxðtn;xn; _xnÞ and Hn � qf =q _xðtn;xn; _xnÞ, and the right-
hand side of Eq. (1) has been linearized with respect to its three arguments. Eq. (2) is subject to xðtnÞ ¼ xn and
_xðtnÞ ¼ _xn.
Eq. (2) satisfies the conditions of the Picard–Lindelof’s theorem and, therefore, has a unique solution in
½tn; tnþ1�, can be solved analytically in each interval tnptptnþ1 and the form of its solution depends on the
roots of the characteristic equation l2 �Hnl� Jn ¼ 0 and on the values of Hn and Jn. For example, if
H2

n=4þ Jno0 and Jna0, then the solution to Eq. (2) can be written as

xðtÞ ¼ expðmnðt� tnÞÞðAn cosðOnðt� tnÞÞ þ Bn sinðOnðt� tnÞÞÞ þ an þ bnðt� tnÞ, (3)

where mn ¼ ð1=2ÞHn, O2
n ¼ �ðH

2
n=4þ JnÞ, bn ¼ �Tn=Jn, an ¼ �ðHn=JnÞbn � Pn=Jn, Pn ¼ f n � Jnxn �Hn _xn,

and the values of An and Bn can be easily determined from the conditions xðtnÞ ¼ xn and _xðtnÞ ¼ _xn as

An ¼ xn � an, (4)

Bn ¼
1

On

ð _xn � Anmn � bnÞ. (5)

Eq. (3) yields the following explicit non-standard finite difference expressions for the conditions on the
discriminant and Jn considered above

xnþ1 ¼ xðtnþ1Þ ¼ expðmnknÞðAn cosðOnknÞ þ Bn sinðOnknÞÞ þ an þ bnkn, (6)

_xnþ1 ¼ _xðtnþ1Þ ¼ expðmnknÞððAnmn þ BnOnÞ cosðOnknÞ þ ðBnmn � AnOnÞ sinðOnknÞÞ þ bn, (7)

where kn ¼ tnþ1 � tn is the (possibly variable) time step.
Analytical solutions to Eq. (2) for other values of the discriminant, Jn and Hn can be found in any good

textbook on linear ordinary differential equations, e.g. [14], and are not reported here.
In this paper, we shall refer to the finite difference formulae of Eq. (2) as the FL method (or simply FL) to

signify that it corresponds to a piecewise linearized (L) technique where the linearization has been performed
with respect to the three arguments of f ðt;x; _xÞ, i.e., with respect to t, x and _x. This method, i.e., Eqs. (6) and
(7), provides the exact solution to Eq. (1) (in the absence of round-off errors) if f ðt;x; _xÞ is a linear function of
its three arguments, i.e., if f ðt; x; _xÞ ¼ bþ ctþ dxþ g _x, where b, c, d and g are constants.

Since FL is based on the piecewise analytical solution of linear equations, it does not require the presence of
linear damping and stiffness terms. This is to be contrasted with other linearization techniques which require
the presence of linear damping and/or linear stiffness [13], i.e., Eq. (1) must be of the form

€xþ c _xþ dx ¼ F ðt;x; _xÞ; t40, (8)

where c and d are constants, at least, one of which is different from zero, and use piecewise analytical
integration of Eq. (8) by expanding F ðt; x; _xÞ in Taylor series expansions in terms of t� tn. If only the first
(constant) term of the Taylor series expansion is retained, these techniques are identical to the one presented
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above if in Eq. (2) one sets Tn ¼ Jn ¼ Hn ¼ 0. Moreover, the piecewise linearization method presented here
results in non-standard finite difference equations, i.e., Eqs. (6) and (7), which are different from those
obtained by Mickens [4]; it also provides analytical solutions in each ðtn; tnþ1Þ which are smooth in each
½tn; tnþ1�.

Eq. (2) can also be written as a system of first-order, linear, ordinary differential equations _X ¼ F where
X � ðx; _xÞT and F � ð _x; f n þ Tnðt� tnÞ þ Jnðx� xnÞ þHnð _x� _xnÞÞ

T for tnotptnþ1, and, for the scalar
equation _x ¼ lx where l is a constant, it can be easily shown that the piecewise linearization method presented
above is A-stable, i.e., it is stable for ReðlÞo0, because its amplification factor, for a constant step size equal to
k, is equal to elk.

The accuracy of the piecewise linearization method presented above can be easily (but lengthly) deduced by
expanding in Taylor’s series the left- and right-hand sides of Eqs. (6) and (7). In order to illustrate the accuracy
of the piecewise linearization method presented above while avoiding the lengthy algebra that the Taylor’s
series expansions of Eqs. (6) and (7) require, we consider the special case f ¼ f ðxÞ, Jn � �l

2
no0 and constant

step size, k. Under these conditions, Eqs. (6) and (7) can be written as

xnþ1 ¼ xn þ
f n

l2n
ð1� cosðlnkÞÞ þ

_xn

ln

sinðlnkÞ, (9)

_xnþ1 ¼
f n

ln

sinðlnkÞ þ _xn cosðlnkÞ, (10)

which, upon expanding the right-hand sides in Taylor’s series about tn, can be written as

xnþ1 ¼ xn þ k _xn þ
k2

2
f n �

k3

6
l2n _xn �

k4l2n
24

f n þOðk5
Þ, (11)

_xnþ1 ¼ _xn þ kf n �
k2l2n
2

_xn �
k3l2n
6

f n þOðk4
Þ. (12)

On the other hand, if f is sufficiently differentiable, it can be easily shown by means of Taylor’s series
expansion that the exact solution of Eq. (1) can be written as

xe
nþ1 ¼ xn þ k _xn þ

k2

2
f n �

k3

6
l2n _xn þ

k4

24
ðf xx _x

2
n � l2nf nÞ þOðk5

Þ, (13)

_xe
nþ1 ¼ _xn þ kf n �

k2l2n
2

_xn þ
k3l2n
6
ðf xx _x

2
n � f nÞ þOðk4

Þ, (14)

where f xx ¼ d2f =dx2.
Eqs. (11)–(14) imply that the differences in the displacement and velocity between the exact solution and

that of the piecewise linearization method presented here are xe
nþ1 � xnþ1 ¼ Oðk4

Þ and _xe
nþ1 � _xnþ1 ¼ Oðk3

Þ,
respectively, if f 2 C2. Furthermore, for f ¼ f ðxÞ, Eq. (1) has a first integral which can be expressed as

1

2
ð _xe2

nþ1 � _xe2
n Þ ¼

Z xnþ1

xn

f ðxÞdx, (15)

whereas the piecewise linearization method presented here yields

1
2
ð _x2

nþ1 � _x2
nÞ ¼ f nðxnþ1 � xnÞ þ

1
2
Jnðxnþ1 � xnÞ

2, (16)

which coincides with Eq. (15) if f ðxÞ is a linear function of x.
In Eq. (2), the right-hand side of Eq. (1) has been linearized with respect to the three arguments of the

f ðt;x; _xÞ, i.e., a complete or full (F) linearization of f ðt;x; _xÞ has been performed. Partial piecewise
linearization methods (here referred to as PL) for the case of smooth f ðt;x; _xÞ can also be developed; for e.g.,
one may choose to linearize f with respect to only t and x, t and _x, or x and _x, and obtain second-order linear
ordinary differential equations similar to Eq. (2) which can be integrated analytically in ½tn; tnþ1� and whose
solutions can be easily derived from Eq. (2). For example, if the linearization of f ðt;x; _xÞ is performed with
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respect to only t and x, t and _x, or x and _x, the corresponding analytical solutions can be obtained by setting
Hn, Jn or Tn to zero, respectively, in Eqs. (2), (6) and (7). These partial piecewise linearization methods are less
accurate than the FL technique presented in this section because the linearization of f ðt;x; _xÞ is not performed
with respect to its three arguments. A particularly interesting case arises when f in Eq. (1) is approximated as
f n, and will be considered in detail in the next subsection.

2.2. Continuous f ðt;x; _xÞ

If the f ðt;x; _xÞ is a continuous but not differentiable function with respect to any of its three arguments, the
formulation presented above cannot be applied, for that formulation requires that T, J and H be continuous
functions. In this case, Eq. (1) can be approximated by

€x ¼ f n; tnotptnþ1, (17)

which implies that, in the interval ½tn; tnþ1�, the acceleration is constant and, therefore, the velocity and
displacement are linear and quadratic functions, respectively, of time, i.e.,

xnþ1 ¼ xn þ kn _xn þ
k2

n

2
f n, (18)

_xnþ1 ¼ _xn þ knf n, (19)

which can also be obtained by taking the limits Tn ! 0, Jn ! 0 and Hn ! 0 in Eqs. (6) and (7). Eq. (19)
corresponds to the first-order accurate explicit Euler method whose linear stability demands that jlkjp1 for
the scalar equation _x ¼ lx where l is a constant. Furthermore, a comparison between the exact value of xnþ1

determined from Eq. (1) by assuming that f is sufficiently differentiable and Eqs. (18) and (19) indicate that
xe

nþ1 � xnþ1 ¼
1
6

k3
n df =dtðfÞ and _xe

nþ1 � _xnþ1 ¼
1
2

k2
n df =dtðyÞ, respectively, where the superscript e denotes the

exact solution, f 2 ½tn; tnþ1� and y 2 ½tn; tnþ1�. Therefore, Eqs. (18) and (19) are second- and first-order
accurate, respectively, for smooth f. For non-smooth f, there is no guarantee that a unique and smooth
solution exists, and df =dt ¼ qf =qtþ ðqf =qxÞ _xþ f qf =q _x may not exist at some points in the interval of
integration because f may not be differentiable with respect to t, x and/or _x and, therefore, the above error
estimates are not valid. This is a consequence of the lack of differentiability of f and the fact that estimates of
the local truncation errors of finite difference methods for Eq. (1) make use of Taylor series expansions; it is
also the reason of why most of the numerical methods that have been used to-date in non-smooth mechanics
problems have ignored differentiability and employed the explicit Euler method given by Eqs. (18) and (19) [1].
The few attempts that have been made to deal with non-smooth dynamics problems by means of non-
dissipative second-order accurate operator-splitting techniques, e.g. [15], for smooth problems have shown
that these techniques exhibit only first-order accuracy in non-smooth problems, i.e., their order of accuracy
drops from two to one. Although the analysis presented above is not valid for non-smooth f, it indicates that,
for non-smooth f, the order of the errors in xnþ1 and _xnþ1 drops by, at least, one in both cases, i.e., the order of
accuracy for the displacement and velocity are expected to be, at most, 2 and 1, respectively, for non-smooth f.
This will be verified at the end of next section.

Since Eqs. (18) and (19) can also be used as approximations when f ðt; x; _xÞ is smooth in ½tn; tnþ1�, one may
state that the approximation of f in ½tn; tnþ1� by f n results in a conditionally stable method whose accuracy is
lower than that of the piecewise linearization method presented in the previous subsection. Moreover, for the
case that f ¼ f ðxÞ, Eq. (17) provides the following integral of motion:

1

2
ð _x2

nþ1 � _x2
nÞ ¼ f nðxnþ1 � xnÞ, (20)

which differs from that of Eq. (16) in the term proportional to Jn.
Eq. (1) can be integrated in ½tn; tnþ1� to yield

_x ¼ _xn þ

Z t

tn

f ðt;x; _xÞdt, (21)
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which, upon approximating the integrand by f n, yields

_x ¼ _xn þ f nðt� tnÞ, (22)

that, in turn, results in Eq. (19). Upon integration of Eq. (22), one obtains Eq. (18). Therefore, Eqs. (18) and
(19) are identical to those obtained by quadratures when f is approximated by f n in ½tn; tnþ1�. However, we
have not yet been able to find any relationship between FL and numerically techniques based on quadrature,
presumably because of the third and fourth terms in the right-hand side of Eq. (2) that result in the
exponential and trigonometric, explicit, non-standard difference Eqs. (6) and (7).

The above discussion indicates that, for smooth f ðt;x; _xÞ, the piecewise linearization method FL should be
used because of its absolute stability and accuracy. When the nonlinearities are not differentiable with respect
to t, x or _x and, therefore, FL is not applicable, one can use either the piecewise partial linearization techniques
discussed above or the piecewise constant acceleration approximation employed in this subsection.
Alternatively, one can use FL when f ðt;x; _xÞ is piecewise smooth and either the constant acceleration method
discussed in this subsection or PL; as indicated above, in partial piecewise linearization techniques, the
linearization is only performed with respect to the arguments of f ðt; x; _xÞ for which this function is smooth.
The combination of FL and PL for the study of nonlinear oscillators when f ðt; x; _xÞ is non-smooth, is here
referred to as FL.

As indicated previously, the lack of differentiability of f has been the reason for the wide use of the explicit Euler
method given by Eqs. (18) and (19) [1]. This method is really a first-order accurate technique for non-smooth f,
does not require the evaluation of derivatives and is conditionally stable. By way of contrast, the PL technique
proposed in this paper offers an alternative to the widely used explicit Euler method and uses the derivatives when
they do exist. As a consequence, it is expected to be more accurate than the explicit Euler method for both smooth
and non-smooth problems. On the other hand, FL is second-order accurate and A-stable, but is only applicable to
smooth problems. The verification of these statements is carried out in the next section.

3. Results

In this section, we present some sample results which have been obtained with the piecewise linearization
method presented in Section 2 for some oscillators with fractional-power nonlinearities. The examples include
both conservative and non-conservative single degree-of-freedom problems, and problems with unknown free
(or natural) frequencies, and have been chosen to assess the accuracy of the piecewise linearization method in
terms of the displacement, velocity, energy conservation/dissipation, and amplitude and frequency of the limit
cycle (when applicable) as a function of the time step. The accuracy of the piecewise linearization method
presented here is assessed by comparing its numerical solutions with analytical or asymptotic ones, when
available.

Although the piecewise linearization method presented in this paper can use a variable time step that may be
adapted to the evolution of the solution, all the results presented here have been obtained with a constant time
step equal to k.

Example 1. This example corresponds to a fractional van der Pol oscillator governed by

€yþ y ¼ �ð1� y2Þð _yÞ2=3, (23)

yð0Þ ¼ 3; _yð0Þ ¼ 1, (24)

where � ¼ 0:1. Note that the right-hand side of Eq. (23) is a continuous function of both y and _y, but it is not
differentiable with respect to _y at _y ¼ 0.

Eq. (23) was solved by means of a frozen or a piecewise constant acceleration method, F, where the
nonlinear terms were evaluated at the previous time step, i.e., Eqs. (18) and (19), a partial linearization
method, PL, where only the linearization was performed with respect to y, and the full linearization technique,
FL, described in Section 2 where the linearization was performed with respect to y and _y, except when _yn ¼ 0
where the linearization was only performed with respect to y because in this case the right-hand side of Eq.
(23) is not differentiable with respect to _y when _y ¼ 0.
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For k ¼ 0:001, few differences in the solutions obtained with FL, PL and F were observed as indicated in
Table 1 which shows the maximum and minimum values of y and _y obtained with these methods as functions
of the time step for 80ptp100. This table clearly illustrates the deterioration of the accuracy of F, PL and FL

as k is increased; this deterioration is larger for F than for PL and FL as observed for k ¼ 0:1, and may be
attributed to the first-order accuracy of F. Although not shown here, FL, PL and F resulted in (unphysical)
damped solutions for k ¼ 1, and FL was found more accurate than PL which, in turn, was more accurate than
F, for k ¼ 1.

Table 1 also shows that the differences between the results obtained with F, PL and FL increase as k is
increased. For k ¼ 0:01, F resulted in a broader phase diagram than PL and FL due to a phase shift, as
illustrated in Fig. 1. The broadness of the phase diagram and the phase shift of F were found to increase as k

was increased from 0.01 to 0.1. For the latter value of k, it was also observed that PL resulted in a broader
phase diagram than FL; this broadness was similar to that of F for k ¼ 0:01 (cf. Fig. 1).

Fig. 1 also shows that the displacement obtained with F is indistinguishable to the naked eye from that of
PL, and this displacement lags behind that obtained with FL.

The angular frequencies predicted by PL are equal to 1.1147, 1.1143, 1.1184 and 1.0383 for k ¼ 0:001, 0.01,
0.1 and 1, respectively; those of F are 1.1145, 1.1101, 0.8703 and 1.0281 for k ¼ 0:001, 0.01, 0.1 and 1,
respectively; and, those of FL are 1.1161, 1.1143, 1.1157 and 1.0239 for k ¼ 0:001, 0.01, 0.1 and 1, respectively,
which indicate that, for this example, the frequencies calculated with PL are comparable to those of FL and do
not exhibit a monotonic behavior as functions of the time step. On the other hand, the frequencies predicted
by F are in good accord with those of PL for k ¼ 0:001 and 0.01, but not for k ¼ 0:1. This result is consistent
with the accuracy study presented in Section 2.

The differences observed in Fig. 1 and Table 1 are associated with the non-differentiability of the right-hand
side of Eq. (23) with respect to _y when _y ¼ 0, and the fact that F treats this term as a constant in each interval
½tn; tnþ1�, whereas PL approximates this term by a constant plus a linear term in ðy� ynÞ, as discussed in
Section 2. On the other hand, FL uses a full linearization (with respect to y and _y whenever _ya0) and a
linearization with respect to only y whenever the right-hand side of Eq. (23) is not differentiable with respect to
this variable. As shown in Section 2, FL is more accurate than PL and F, and the results presented in Fig. 1
indicate that the displacement predicted by PL is nearly identical to that of F, whereas the phase diagram of
the former is more accurate than the latter. Therefore, for k ¼ 0:01, the velocity predicted by PL is more
accurate than that of F as one should have expected because PL accounts for the variation of the right-hand
side of Eq. (23) with respect to y, whereas F freezes this term at tn.

Calculations performed with an equation similar to Eq. (23) but where the power of _y is 1
3
instead of 2

3
show

that the amplitude of the limit cycle predicted by FL with k ¼ 0:01 is equal to 1.8254, and this value is in good
accord with the amplitude of 1.82574 obtained by Mickens [16] by means of the harmonic balance method.
These calculations also show similar trends to those described above.

The results shown above and others not presented here indicate that FL is more accurate than F and PL;
therefore, unless stated otherwise, the calculations in the examples reported below have been carried out
with FL.
Table 1

Maximum and minimum values of y and _y for F, PL and FL as functions of the time step for 80ptp100 for Example 1

k ðmaxðyÞ;minðyÞÞPL ðmaxðyÞ;minðyÞÞF ðmaxðyÞ;minðyÞÞFL

0.001 ð3:1337;�4:2548Þ ð3:1309;�4:2443Þ ð3:1507;�4:3118Þ
0.01 ð3:1391;�4:2721Þ ð3:0911;�4:1142Þ ð3:1366;�4:2637Þ
0.1 ð3:1756;�4:3797Þ ð2:7982;�3:3587Þ ð3:1416;�4:2770Þ

k ðmaxð _yÞ;minð _yÞÞPL ðmaxð _yÞ;minð _yÞÞF ðmaxð _yÞ;minð _yÞÞFL

0.001 ð3:4544;�3:4539Þ ð3:4498;�3:4507Þ ð3:4778;�3:4778Þ
0.01 ð3:4640;�3:4592Þ ð3:3865;�3:9992Þ ð3:4582;�3:4582Þ
0.1 ð3:5349;�3:4868Þ ð2:9697;�3:0340Þ ð3:4675;�3:4688Þ
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J.I. Ramos / Journal of Sound and Vibration 300 (2007) 502–521 509
Example 2. This example corresponds to

€yþ y1=3 þ � _y ¼ 0, (25)

yð0Þ ¼ 0:5; _yð0Þ ¼ 0, (26)

and � ¼ 0:1. The total energy of the system, i.e., EðtÞ ¼ 1
2
_y2 þ 3

4
y4=3, decreases with time, and the second term

in the left-hand side of Eq. (25) is not differentiable with respect to y at y ¼ 0. For this example, PL coincides
with FL.

Fig. 2 illustrates the results obtained with FL and k ¼ 0:01. This figure shows the damping of both the
displacement and velocity as well as the smoothness of the solution at y ¼ 0 because the piecewise linearization
method provides analytical solutions in ðtn; tnþ1Þ which are smooth in ½tn; tnþ1�.

Calculations performed with k ¼ 0:001 and 0.01 were found to yield results that they were indistinguishable
to the naked eye, i.e., k ¼ 0:001 yielded yð100Þ ¼ �0:0009137420 and _yð100Þ ¼ �0:008520428, whereas k ¼

0:01 resulted in yð100Þ ¼ �0:001452578 and _yð100Þ ¼ 0:004207011, but those corresponding to k ¼ 0:1
indicate that the numerical solution settles down into a (non-existing) cycle for t greater than approximately 45
and the maximum values of y and _y in this cycle were about 0.03 and 0.12, respectively. The value of
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J.I. Ramos / Journal of Sound and Vibration 300 (2007) 502–521510
Eð100Þ=Eð0Þ was found to be equal to 3:4538� 10�4, 4:3691� 10�4, and 0.0203 for k ¼ 0:001, 0.01, and 0.1,
respectively, thus indicating that the energy at t ¼ 100 increases as k is increased.

Example 3. This example corresponds to

€yþ y1=3 þ �y3 ¼ 0, (27)

yð0Þ ¼ 1; _yð0Þ ¼ 0, (28)

and � ¼ 0:5. The total energy of the system, i.e., EðtÞ ¼ 1
2
_y2 þ 3

4
y4=3 þ 1

4
�y4 ¼ Eð0Þ is conserved, and the second

term is not differentiable with respect to y at y ¼ 0. Since the total energy is conserved, Eq. (27) has an infinite
number of periodic solutions. For this example, PL coincides with FL.

The results presented in Fig. 3 indicate that, for the initial conditions given above, the solution is a limit
cycle, and the energy is almost conserved for k ¼ 0:01. The maximum and minimum values of EðtÞ=Eð0Þ for
0ptp100 are 1.0013 and 0.9997, respectively, for k ¼ 0:001, and 1.0159 and 0.9990, respectively, for k ¼ 0:01,
and 1.7464 and 0.9988, respectively, for k ¼ 0:1, thus indicating that the larger the value of k, the larger is the
energy conservation violation. In fact, the energy was found to increase in an oscillatory manner for k ¼ 0:1 at
a faster rate than that for k ¼ 0:01, and the phase diagram for this time step was very broad.

The angular frequencies predicted by FL are 1.2385, 1.2375, 1.2652 and 1.1365 for k ¼ 0:001, 0.01, 0.1 and
1, respectively; therefore, the frequencies predicted by FL are not monotonic functions of k.

Although not shown here, FL was found to result in overflow for k ¼ 0:1.
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Example 4. This example corresponds to

€yþ y1=3 ¼ �ð1� y2Þ _y, (29)

yð0Þ ¼ 0:5; _yð0Þ ¼ 0, (30)

and � ¼ 0:1. The second term in the left-hand side of Eq. (29) is continuous but not differentiable with respect
to y at y ¼ 0. For this example, PL coincides with FL.

The maximum values of EðtÞ=Eð0Þ for 0ptp100 where EðtÞ ¼ 1
2
_y2 þ 3

4
y4=3, are 7.0245, 7.0430, 7.4913 and

13.7474 for k ¼ 0:001, 0.01, 0.1 and 1, respectively, thus indicating that the accuracy of FL degrades as the
time step is increased. However, the differences between the results obtained with k ¼ 0:001 and 0.01 are very
small, e.g., the relative errors in the energy at t ¼ 100 and the angular frequency are less than 0.3% and 0.05%,
respectively, for k ¼ 0:01, and the results presented in Fig. 4 indicate that, after an initial transient, y, _y and E

become periodic functions of time for k ¼ 0:01. Note that the phase diagram is smooth at y ¼ 0 because the
piecewise linearization method provides analytical solutions in ðtn; tnþ1Þ which are smooth in ½tn; tnþ1�. No
periodic solution was found numerically for k ¼ 0:1.

The angular frequencies predicted by FL are 0.8411, 0.8407, 0.8397 and 0.7854 for k ¼ 0:001, 0.01, 0.1 and
1, respectively; therefore, the angular frequency decreases as k is increased, and the relative errors in the
angular frequency (measured with respect to the angular frequency obtained with k ¼ 0:001) are
approximately equal to 0.05%, 0.17% and 6.62% for k ¼ 0:01, 0.1 and 1, respectively.

Example 5. This example corresponds to

€yþ y3 ¼ �ð1� y2Þ _y1=3, (31)

yð0Þ ¼ 0:5; _yð0Þ ¼ 0, (32)

and � ¼ 0:1. Note that the term in the right-hand side of Eq. (31) is not differentiable with respect to _y at _y ¼ 0.
For this example, PL coincides with FL.

The solution of this problem exhibits an initial transient before settling down into a periodic motion
characterized by a limit cycle elongated in the y direction and a periodic energy as illustrated in Fig. 5 which
corresponds to k ¼ 0:01. A similar periodic motion was also observed even with k ¼ 0:1; in fact, the angular
frequency was found to be equal to 1.5020, 1.5020, 1.4936 and 0.7605 for k ¼ 0:001, 0.01, 0.1 and 1,
respectively, whereas the maximum values of where EðtÞ ¼ 1

2
_y2 þ 1

4
y4, for 0ptp100 are 164.1928, 164.2022,
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and 162.0134 for k ¼ 0:001, 0.01 and 0.1, respectively. Therefore, both the frequency and energy decrease as k

is increased.

Example 6. This example corresponds to

€yþ y3=5 ¼ �ð1� y2Þ _y, (33)

yð0Þ ¼ 0:5; _yð0Þ ¼ 0, (34)

and � ¼ 0:1. Note that the second term in the left-hand side of Eq. (33) is not differentiable with respect to y at
y ¼ 0. For this example, PL coincides with FL.

The solution of this problem exhibits an initial transient before settling down into a periodic motion
characterized by a limit cycle and a periodic energy as illustrated in Fig. 6 which corresponds to k ¼ 0:01. A
similar periodic motion was also observed even with k ¼ 0:1; in fact, the angular frequency was found to be
equal to 0.9026, 0.9026, 0.9035 and 0.8403 for k ¼ 0:001, 0.01, 0.1 and 1, respectively, and the maximum
values of EðtÞ ¼ 1

2
_y2 þ 5

8
y8=5 for 0ptp100 are 10.0542, 10.0523 and 10.2092 for k ¼ 0:001, 0.01 and 0.1,

respectively; therefore, for this example, the angular frequency and the energy are not monotonic functions of
k. Note that the phase diagram is smooth everywhere and, in particular, at y ¼ 0, because the piecewise
linearization method provides analytical solutions in ðtn; tnþ1Þ which are smooth in ½tn; tnþ1�.
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Example 7. This example corresponds to the following nonlinear oscillator

€yþ y5=3 ¼ 0, (35)

yð0Þ ¼ 100; _yð0Þ ¼ 0, (36)

which has a constant energy, i.e., EðtÞ ¼ 1
2
_y2 þ 3

8
y8=3 ¼ Eð0Þ, and the second term is differentiable with respect

to y at y ¼ 0. For this example, PL coincides with FL.

Eq. (35) has been previously analyzed by Hu and Xiong [17] who used the harmonic balance method and a
non-standard finite difference scheme due to Mickens [4].

Fig. 7 illustrates the phase diagram and the normalized energy obtained with FL andM, for k ¼ 0:01. TheM
method corresponds to the non-standard finite difference technique developed by Mickens [4] and can be
written as

ynþ1 � yn

sinðkÞ
¼ zn;

znþ1 � zn

sinðkÞ
¼ �ðynþ1Þ

5=3. (37)

M provides discrete solutions, whereas FL provides analytical solutions in each ðtn; tnþ1Þ which are smooth in
½tn; tnþ1�.

Both M and FL are non-standard finite difference methods and are here compared in terms of the phase
diagram and energy conservation as shown in Fig. 7. This figure clearly illustrates that FL preserves more
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accurately the energy than M, for k ¼ 0:01. The maximum and minimum energies predicted by FL are 1 and 1,
respectively, for k ¼ 0:001, 1.0002 and 0.9988, respectively, for k ¼ 0:01, and 0.9994 and 0.7332, respectively,
for k ¼ 0:1, whereas the maximum and minimum energies predicted by M are 1.0025 and 0.9975, respectively,
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for k ¼ 0:001, 1.0255 and 0.9759, respectively, for k ¼ 0:01, and 1.3251 and 0.7953, respectively, for k ¼ 0:1.
Therefore, FL preserves the energy more accurately than M as k is varied. In addition, the maximum energy
predicted by FL is not a monotonic function of k, whereas the minimum energy predicted by this method is a
decreasing function of the time step. The maximum and minimum energies predicted by M increase and
decrease, respectively, as k is increased.

The angular frequencies predicted by FL are 4.3651, 4.3661 and 4.1948 for k ¼ 0:001, 0.01 and 0.1,
respectively, whereas M predicts 4.3651, 4.3674 and 4.4236, respectively. Therefore, the angular frequencies
predicted by FL are not monotonic functions of the time step, whereas those of M increase as k is increased.

Example 8. This example corresponds to the following oscillator

€yþ y1=3 ¼ 0, (38)

yð0Þ ¼ 1; _yð0Þ ¼ 0, (39)

which has a constant energy, i.e., EðtÞ ¼ 1
2
_y2 þ 3

4
y4=3 ¼ Eð0Þ, and the second term in the left-hand side of Eq.

(38) is not differentiable with respect to y at y ¼ 0. For this example, PL coincides with FL.

Eq. (38) has been previously analyzed by Cooper and Mickens [18] by means of a generalized harmonic
balance method combined with a numerical technique that yielded an angular frequency equal to 1:054=y

1=3
0 ,

whereas that predicted by the harmonic balance method was equal to 1:049=y
1=3
0 , where y0 ¼ yð0Þ.

Compared with the previous example, here M preserves the energy more accurately than FL. In fact, the
results presented in Fig. 8 that corresponds to k ¼ 0:01 indicate that the energy predicted by M oscillates in an
almost erratic fashion about 1, whereas that of FL increases in an oscillatory growing manner. Similar results
to those shown in Fig. 8 have also been observed for k ¼ 0:001 and 0.1, although the maximum value of the
amplitude of the energy oscillations predicted by both FL and M increases as k is increased.

The maximum and minimum energies predicted by FL are 1.0007 and 0.9998, respectively, for k ¼ 0:001,
1.0338 and 0.9964, respectively, for k ¼ 0:01, and 1.7275 and 0.9755, respectively, for k ¼ 0:1, whereas the
maximum and minimum energies predicted by M are 1.0055 and 0.9994, respectively, for k ¼ 0:001, 1.0059
and 0.9944, respectively, for k ¼ 0:01, and 1.0801 and 0.9515, respectively, for k ¼ 0:1. Therefore, both FL and
M predict a maximum (minimum) energy that increases (decreases) as k is increased.

A plausible explanation of the differences between the results presented in Figs. 7 and 8 is that the
nonlinearity of Example 7 is differentiable at y ¼ 0 and the Jacobian of this nonlinearity is nil at y ¼ 0. On the
other hand, the nonlinearity of Example 8 is not differentiable at y ¼ 0, and, therefore, FLmakes use of a first-
order accurate piecewise constant acceleration method, i.e., Eqs. (18) and (19), when y ¼ 0 and the second-
order accurate Eqs. (6) and (7), otherwise. This implies that the numerical approximation provided by FL

whenever y � 0 is not a very good one because this method freezes the nonlinearity of Example 8 to that at the
−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

y(t)

dy
/d
t(
t)

0 20 40 60 80 100
−0.01

0

0.01

0.02

0.03

0.04

0.05

t

E
(t
)/
E
(0
)−
1

(a) (b)

Fig. 8. Phase diagrams (a) and energy (b) obtained with FL (solid line) and M (dashed line) and k ¼ 0:01 for Example 8.
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previous time level whenever y ¼ 0. On the other hand, M does not make use of the Jacobian of the
nonlinearity at all.

Example 9. Example 8 is a special case of the following oscillator:

€yþ y1=ð2nþ1Þ ¼ 0, (40)

yð0Þ ¼ y0; _yð0Þ ¼ 0, (41)

which has a constant energy, i.e., EðtÞ ¼ 1
2
_y2 þ ½ð2nþ 1Þ=ð2nþ 2Þ�yð2nþ2Þ=ð2nþ1Þ ¼ Eð0Þ, and n is a natural

number including zero. n ¼ 0 and 1 correspond to the linear harmonic oscillator and Example 8, respectively,
whereas n!1 implies that y1=ð2nþ1Þ ! signðyÞ. For n ¼ 0, FL provides the exact solution of Eqs. (40) and
(41) in the absence of round-off errors, and, for this example, PL coincides with FL.

Eq. (40) has been studied previously by van Horssen [19] that presented its solution in terms of an integral
that had to be performed numerically, tabulated the angular frequency as a function of y0 ¼ yð0Þ, and
compared his results with those obtained by Mickens [20] who employed a generalized harmonic balance
method. The results shown by van Horssen indicate that the harmonic balance technique underpredicts the
angular frequency and that this underprediction increases as n is increased.

Eq. (40) has also been studied by Swamy et al. [21] who applied the harmonic balance method and a Ritz
procedure, and found that the latter predicts more accurate angular frequencies than the former, and by
Awrejcewicz and Andrianov [22] who considered the limit n!1 using a (perturbative) d-expansion
technique.

Eqs. (40) and (41) were transformed into

€zþ z1=ð2nþ1Þ ¼ 0, (42)

zð0Þ ¼ 1; _zð0Þ ¼ 0, (43)

where the dots in Eqs. (42) and (43) denote differentiation with respect to t, y ¼ y0z and t ¼ y
n=ð2nþ1Þ
0 t.

Table 2 shows a comparison between the exact frequencies determined by van Horssen [19], those of a
harmonic balance procedure [21] and those of FL with k ¼ 0:001. The frequencies of FL were calculated by
means of a bisection technique.

The results presented in Table 2 indicate that FL predicts angular frequencies in good accord with the exact
ones obtained by van Horssen and these frequencies are more accurate than those based on a harmonic
balance/numerical procedure [19,21]. Table 2 also shows that M predicts slightly more accurate frequencies
Table 2

Angular frequencies calculated by van Horssen (vH) [19], harmonic balance (HB) [21], FL and M with k ¼ 0:001 for Example 9

n ovHðnÞy
n=ð2nþ1Þ
0 oFLðnÞy

n=ð2nþ1Þ
0 oMðnÞy

n=ð2nþ1Þ
0 oHBðnÞy

n=ð2nþ1Þ
0

0 1.00000 1.0005481 1.0005477

1 1.07045 1.0709420 1.0710573 1.049115

2 1.08613 1.0848049 1.0866512 1.048122

3 1.09302 1.1085051 1.0937899 1.044052

4 1.09689 1.0910252 1.0975536 1.040169

5 1.09938 1.0925251 1.0997605 1.036840

6 1.10110 1.0887105 1.1017105

7 1.10238 1.0906835 1.1028751

8 1.10335 1.0909885 1.1039369

9 1.10412 1.0918665 1.1045795

10 1.10474 1.0932994 1.1052844 1.026280

50 1.10947 1.0874369 1.1098155 1.009188

500 1.11059 1.0906087 1.1112629

1; 10; 000 p
2
ffiffi
2
p 1.2219744 1.1114939
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than FL. As explained before in Example 8, this result is to be expected for n40 since the nonlinear restoring
function is not differentiable when y ¼ 0 and the piecewise linearization method presented here is second-
order accurate when ya0, and first-order accurate otherwise.

Example 10. This example corresponds to the following oscillator:

€yþ sign ðyÞjyjq ¼ 0, (44)

yð0Þ ¼ y0; _yð0Þ ¼ 0, (45)

where qX0. Eq. (44) has the following integral of motion EðtÞ ¼ 1
2
_y2 þ 1

qþ1
jyjqþ1 ¼ Eð0Þ and its angular

frequency can be calculated exactly in terms of the Gamma function [23]. For q ¼ 0, the exact angular

frequency is oEX ¼ p=
ffiffiffiffiffiffiffi
8y0

p
. For this example, PL coincides with FL.

Eq. (44) has been previously considered by Gottlieb [23] who manipulated it before applying a harmonic
balance technique. Gottlieb also provided exact frequencies for positive q, used the harmonic balance method
with only one Fourier coefficient and a modified harmonic balance procedure that accounts for even and odd
values of 1=q, and provided an extensive table of comparisons between the exact and approximate values of
the angular frequency. Such a table indicates that the harmonic balance method with only one Fourier
coefficient overestimates the frequency, whereas the same technique with some manipulations underpredicts it.

Eqs. (44) and (45) can also be written as

€zþ signðzÞjzjq ¼ 0, (46)

zð0Þ ¼ 1; _zð0Þ ¼ 0, (47)

where the dots in Eqs. (46) and (47) denote differentiation with respect to t, y ¼ y0z and t ¼ y
ð1�qÞ=2
0 t, and the

angular frequencies reported below are those corresponding to Eqs. (46) and (47). The angular frequencies
presented in Table 3 indicate that FL predicts slightly more accurate frequencies than M for a large range of
values of q and k ¼ 0:0001; the differences between the frequencies predicted by these two methods are always
less than 1%, and the frequencies predicted by FL and M are more accurate than those obtained with a direct
harmonic balance technique based on the first Fourier coefficient and a modified harmonic balance method
that treats independently even and odd values of 1=q [23].
Table 3

Exact (EX) angular frequencies and those determined with FL and M with k ¼ 0:0001 for Example 10

q oEXðpÞ oFLðpÞ oMðpÞ

1 1.000000 1.0082490 1.0082460

3/4 1.024957 1.0334099 1.0334098

5/7 1.028660 1.0366503 1.0371397

2/3 1.033652 1.0418939 1.0421772

3/5 1.040749 1.0490220 1.0493302

1/2 1.051637 1.0603005 1.0603088

3/7 1.059596 1.0688881 1.0683346

1/3 1.070451 1.0792801 1.0792801

1/4 1.080181 1.0890382 1.0890852

1/5 1.086126 1.0949623 1.0950869

1/6 1.090133 1.0990256 1.0991208

1/7 1.093018 1.1016784 1.1020499

1/8 1.095194 1.1037508 1.1042191

1/9 1.096894 1.1053072 1.1059405

1/10 1.098258 1.1067789 1.1073096

1/11 1.099377 1.1076425 1.1084489

0 1.110721 1.1171964 1.1199019
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Table 4

Angular frequencies determined with FL as functions of k for Example 10

q k ¼ 0:01 k ¼ 0:001 k ¼ 0:0001

1 0.9997868 1.0005486 1.0082490

3/4 1.0248130 1.0255226 1.0334099

5/7 1.0284455 1.0292321 1.0366503

2/3 1.0332914 1.0342154 1.0418939

3/5 1.0406101 1.0413201 1.0490220

1/2 1.0500473 1.0522296 1.0603005

3/7 1.0560917 1.0600264 1.0688881

1/3 1.0656362 1.0708772 1.0792801

1/4 1.1675404 1.0795840 1.0890382

1/5 1.0591701 1.0856153 1.0949623

1/6 1.0354817 1.1039122 1.0990256

1/7 1.0538553 1.0917708 1.1016784

1/8 1.0484813 1.0892577 1.1037508

1/9 1.0671917 1.0921813 1.1053072

1/10 1.0488810 1.0914827 1.1067789

1/11 1.0206510 1.1141843 1.1076425

0 0.9100739 1.0852358 1.1171964

Table 5

Maximum (max) and minimum (min) values of e ¼ EðtÞ=Eð0Þ determined with FL and M for 0ptp100 and k ¼ 0:0001 for Example 10

q emax
FL emin

FL
emax
M emin

M

1 1.0000 1.0000 1.0001 0.9999

3/4 1.0000 1.0000 1.0000 1.0000

5/7 1.0058 1.0000 1.0000 1.0000

2/3 1.0028 1.0000 1.0000 1.0000

3/5 1.0025 1.0000 1.0000 1.0000

1/2 1.0001 1.0000 1.0001 1.0000

3/7 1.0000 0.9973 1.0001 0.9999

1/3 1.0000 1.0000 1.0001 0.9999

1/4 1.0002 1.0000 1.0001 0.9999

1/5 1.0004 1.0000 1.0001 0.9999

1/6 1.0003 1.0000 1.0001 0.9999

1/7 1.0009 1.0000 1.0001 0.9999

1/8 1.0012 1.0000 1.0001 0.9999

1/9 1.0014 1.0000 1.0001 0.9999

1/10 1.0012 1.0000 1.0001 0.9999

1/11 1.0018 1.0000 1.0001 0.9999

0 1.0052 1.0000 1.0001 0.9999
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The effects of k on the angular frequencies predicted by FL are illustrated in Table 4 which shows that the
accuracy of this method increases as k is decreased as one expects because the method is based on local
linearization of the nonlinear terms.

Table 5 shows that energy is conserved for k ¼ 0:0001 and that M preserves the energy slightly better than
FL. Although not shown here, the violation of energy conservation increases as k is increased.

Discussion: As indicated in Section 2, the Picard–Lindelof’s theorem ensures the convergence and
uniqueness of the solution of Eq. (1) if f ðt;x; _xÞ is continuous with respect to its three arguments and satisfies a
uniform Lipschitz condition with respect to the second and third arguments. Moreover, if f is sufficiently
differentiable, one can apply a variety of numerical methods for the numerical solution of Eq. (1), and prove
their convergence by means of Taylor’s series expansions. However, if f ðt;x; _xÞ is non-smooth, rigorous
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convergence results for numerical methods for Eq. (1) are difficult to obtain because of lack of differentiability
[1], and, as a consequence, most of the numerical methods that have been used to-date in non-smooth
mechanics problems have ignored differentiability, e.g., they employ the F method presented in this paper. It
should be noted that Examples 1–6, 8, 9 (with na0) and 10 correspond to Group C, i.e., non-smooth problems
characterized by vectors fields which are continuous, of the classification of non-smooth mechanical systems
introduced by Brogliato [1].

The results of the 10 examples presented in this paper and others not shown here indicate that the piecewise
linearization method, FL, can accurately predict the displacement, velocity, energy, and amplitude and
frequency of nonlinear oscillators. In addition, the method provides results in accord with those of non-
standard finite difference methods, although it may predict that energy is not strictly preserved in conservative
systems such as those of Examples 8 and 9. However, depending on the nonlinearity, both FL and M may
require small time steps to obtain accurate results. Furthermore, we showed in Section 2 that FL is second-
order accurate for smooth f ðt;x; _xÞ, whereas the constant acceleration method is first-order accurate. The
piecewise linearization technique presented in this paper applies full linearization when f ðt; x; _xÞ is smooth, and
partial piecewise linearization, otherwise. Therefore, for non-smooth f ðt;x; _xÞ, the piecewise linearization
technique is expected to have an order of accuracy between 1 and 2. This has been verified by determining the
numerical errors as

eNðtn; kÞ ¼ jyeðtnÞ � yNðtn; kÞj ¼ Akp, (48)

when the exact solution, ye, is available, or

eNðtn; kÞ ¼ jyNEðtn; kmÞ � yNðtn; kÞj ¼ Bkp, (49)

where yNðtn; kÞ and yNE denote the numerical solution obtained with the N method using a time step equal to k

and a very small time step equal to km, respectively, A and B are assumed to be (positive) constants, and p is
the order of the N method.

From Eqs. (48) and (49), it is an easy matter to obtain

p ¼
logðeNðtn; k1Þ=eNðtn; k2ÞÞ

logðk1=k2Þ
. (50)

Application of Eq. (50) at tn with km ¼ 10�4, k1 ¼ 10�3 and k2 ¼ 10�2 shows that the order of accuracy of
FL is p ¼ 1:37, 1.35, 1.34, 1.42, 1.35, 1.53, 2.01 and 1.35 for Examples 1–8, respectively, whereas that of F is
0.99, 0.98, 0.99, 0.98, 0.98, 0.99, 0.98 and 1.02 for the same examples, where tn denotes the time just after the
first occurrence of y ¼ 0 for Examples 2, 3, 4, 6 and 8, the time just after the first occurrence of _y ¼ 0 for
Examples 1 and 5, and tn ¼ 100 for Example 7.

Just before the first occurrence of y ¼ 0 in Examples 2, 3, 4, 6 and 8, and the first occurrence of _y ¼ 0 in
Examples 1 and 5, the order of accuracy of FL was found to be 2.02, 1.99, 1.99, 2.02, 2.01, 1.98 and 1.99 for
Examples 1–6 and 8, respectively, in accord with the analysis presented in Section 2 which indicates that this
method is second-order accurate when f is sufficiently smooth.

The order of accuracy of FL was found to decrease as t increased and tended towards 1 as t was increased
when f was non-smooth as in Examples 1–6 and 8–10, and was two for Example 7. F is first-order accurate as
shown in Section 2.
4. Conclusions

A piecewise linearization method based on the Taylor series expansion of nonlinear ordinary differential
equations with respect to time, the displacement and velocity, has been developed for the study of one degree-
of-freedom nonlinear oscillators with smooth and fractional-power nonlinearities. The method provides the
exact solution (in the absence of round-off errors) of linear ordinary differential equations with constant
coefficients and right-hand sides that depend linearly on time, displacement and velocity, and yields explicit
nonstandard finite difference formulae for the discrete displacement and velocity. It also provides smooth
solutions.
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For smooth nonlinearities, it has been shown that the piecewise linearization method is absolute stable and
second-order accurate provided that the linearization is performed with respect to time, displacement and
velocity. If the nonlinearities are approximated by a piecewise constant term, the piecewise linearization
method presented here is conditionally stable and first-order accurate. Piecewise partial linearization
techniques are also conditionally stable and first-order accurate.

It has been shown that the piecewise linearization method presented in this paper preserves very well the
amplitude and phase, energy and angular frequency of oscillators with fractional-power nonlinearities
provided that the time step is properly chosen, and its accuracy degrades as the time step is increased. The
method does not require explicit linear damping and/or linear stiffness terms in the governing equation, and it
is more accurate than linearization techniques that freeze the nonlinearities at the previous time level or
linearize the nonlinear terms with respect to only the displacement or the velocity.

The piecewise linearization method was found to predict slightly more (less) accurate results, i.e.,
displacement, velocity, energy and angular frequency, than Mickens’ nonstandard finite difference schemes for
fractional powers greater (less) than one. The reason for the discrepancies between the piecewise linearization
method and Mickens’s non-standard finite difference approach has been attributed to the non-differentiability
of the nonlinear terms when the positive fractional powers are smaller than unity. However, the piecewise
linearization methods presented in this paper are entirely general, whereas those proposed by Mickens have to
be designed in a case-by-case manner.
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